skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ward, B B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Diatom-dominated blooms in coastal upwelling systems contribute disproportionately to global primary production. The fate of carbon captured during a diatom bloom is often influenced by species-specific ecological differences. However, successional patterns that take place during a diatom bloom are often oversimplified, and the diversity of diatom adaptations to different stages of a bloom remains poorly characterized. To improve our understanding of diatom specificity to certain conditions within a bloom, we employed microscopy, 18S rRNA amplicons, and biogeochemical analysis within a simulated upwelling mesocosm experiment. We successfully simulated a diatom bloom and found that diatoms bloomed during early and late phases of the bloom. Surprisingly, the relative abundance of congeneric diatoms with the Thalassiosira, Chaetoceros, and Pseudonitzschia displayed opposing patterns that were consistent among experimental mesocosms. The late stage of the bloom was especially interesting because some diatoms continued to bloom among mixotrophic dinoflagellate genera Akashiwo, Heterocapsa, and Prorocentrum. Additionally, Syndiniales putative parasites were correlated with several diatoms, especially in the initial phase of the bloom. The novel observations of consistent rapid successional changes within our mesocosms reflect the ability of diatom and dinoflagellate genera to occupy bloom conditions that fall outside traditional expectations. Syndiniales parasite co-occurrence with blooming diatoms may be important to successional trends of coastal diatom populations, and this parasitic interaction deserves further study in coastal upwelling systems. This study indicates there are underlying diatom traits and biotic interactions that should be considered when estimating their contribution to productivity and carbon cycling within upwelling systems. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026